Expression of 7 alpha-hydroxylase in non-hepatic cells results in liver phenotypic resistance of the low density lipoprotein receptor to cholesterol repression.
نویسندگان
چکیده
The goal of this study was to understand why the expression of low density lipoprotein (LDL) receptors by the liver is poorly down-regulated by cholesterol. We examined the hypothesis that 7 alpha-hydroxylase may indirectly induce the expression of the LDL receptor by metabolizing, i.e. inactivating oxysterol repressors. Non-hepatic Chinese hamster ovary cells, transfected with a plasmid encoding 7 alpha-hydroxylase, expressed both the mRNA and functional activity of this liver-specific enzyme. In the presence of 5% serum, expression of the LDL receptor by transfected cells was > 20 times that of non-transfected cells despite a 50% increased content of cholesterol ester. Both cell types displayed an almost complete repression of the LDL receptor by the oxysterol 25-hydroxycholesterol, suggesting that transcriptional control of the LDL receptor gene remained intact in the transfected cells. However, only cells expressing 7 alpha-hydroxylase showed a derepression of the LDL receptor with time. This transient sensitivity to 25-hydroxycholesterol repression was attributed to a 3-fold greater rate of metabolism of [3H]25-hydroxycholesterol. The paradoxical induction of LDL receptor mRNA in transfected cells having greater amounts of cholesterol esters suggests that 7 alpha-hydroxylase may preferentially use oxysterols rather than cholesterol as substrates. The combined data are consistent with the proposal that 7 alpha-hydroxylase indirectly induces the LDL receptor gene by metabolizing (inactivating) oxysterol repressors. Liver-specific expression of 7 alpha-hydroxylase can account for the relative resistance of hepatic LDL receptors to down-regulation.
منابع مشابه
Attenuating Effect of Curcumin on Diet-induced Hypercholesterolemia in Mice
Background and Aims: Atherosclerosis is currently a chronic disease in which cholesterols accumulate in large arteries. Many genes such as liver X receptor α (LXRα) are involved in the cholesterol homeostasis. Curcumin, the main active polyphenol component derived from Curcuma longa, contribute to anti-inflammation and antioxidant in the treatment of atherosclerosis. Thus, this stud...
متن کاملAdenovirus-mediated transfer of a gene encoding cholesterol 7 alpha-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol.
Clinical interventions that accelerate conversion of cholesterol to bile acids reduce circulating low density lipoprotein (LDL) cholesterol concentrations. The initial and rate-limiting step in the bile acid biosynthetic pathway is catalyzed by hepatic cholesterol 7 alpha-hydroxylase. To examine the effects of transient primary overexpression of this enzyme on sterol metabolism and lipoprotein ...
متن کاملTransgenic Expression of Cholesterol-7- -Hydroxylase Prevents Atherosclerosis in C57BL/6J Mice
C57BL/6J mice are susceptible to atherosclerosis when fed a diet consisting of fat, cholesterol, and taurocholate. The susceptibility to diet-induced atherosclerosis is linked to a reduction in plasma high density lipoprotein (HDL). Diet-induced reduction of plasma HDL shows a physiological and a genetic correlation with repression of cholesterol-7-hydroxylase, the liver-specific enzyme that re...
متن کاملنقش ژن SHIP2 در لیپوژنز القایی توسط اولئات
Introduction: Dyslipidemia is one of the key risk factors for cardiovascular disease in type 2 diabetes (T2D). The dyslipidemia is characterized by increased plasma concentration of triglycerides (TG), reduced concentration of high density lipoprotein cholesterol (HDL-C) and an increased concentration of small dense low density lipoprotein (LDL) cholesterol. Evidence from bo...
متن کاملRegulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine on HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients.
To characterize the metabolic regulatory response to interruption of the enterohepatic circulation of bile acids, we examined the effects of cholestyramine treatment on the rate-limiting steps in cholesterol biosynthesis (HMG-CoA reductase) and bile acid production (cholesterol 7 alpha-hydroxylase) as well as on the heparin-sensitive binding of low density lipoproteins (LDL) (reflecting LDL rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 32 شماره
صفحات -
تاریخ انتشار 1992